Introductory STATISTICS

9TH EDITION

WEีlss

Chapter 2

Organizing Data

PEARSON

Section 2.1
 Variables and Data

PEARSON

Definition 2.1

Variables

Variable: A characteristic that varies from one person or thing to another.

Qualitative variable: A nonnumerically valued variable.
Quantitative variable: A numerically valued variable.
Discrete variable: A quantitative variable whose possible values can be listed.

Continuous variable: A quantitative variable whose possible values form some interval of numbers.

Figure 2.1

Types of variables

Definition 2.2

Data

Data: Values of a variable.
Qualitative data: Values of a qualitative variable.
Quantitative data: Values of a quantitative variable.
Discrete data: Values of a discrete variable.
Continuous data: Values of a continuous variable.

Section 2.2

Organizing Qualitative Data

PEARSON

Definition 2.3

Frequency Distribution of Qualitative Data

A frequency distribution of qualitative data is a listing of the distinct values and their frequencies.

Table 2.1

Political party affiliations of the students in introductory statistics

		R	O	R	R	R	R
D	O	O	R	D	O	O	R
D	D						
D	R	O	D	R	R	O	R
D	O	D	D	D	R	O	D
O	R	D	R	R	R	R	D

Table 2.2

Table for constructing a frequency distribution for the political party affiliation data in Table 2.1

Party	Tally	Frequency
Democratic	HI I HI III	13
Republican	HI UH IHI III	18
Other	HI IIII	9
		40

Definition 2.4

Relative-Frequency Distribution of Qualitative Data

A relative-frequency distribution of qualitative data is a listing of the distinct values and their relative frequencies.

Table 2.3

Relative-frequency distribution for the political party affiliation data in Table 2.1

Party	Relative frequency	
Democratic	0.325	$\leftarrow 13 / 40$
Republican	0.450	$\leftarrow 18 / 40$
Other	0.225	$\leftarrow 9 / 40$
	1.000	

Figure 2.2

Pie chart of the political party affiliation data in Table 2.1

Political Party Affiliations

Figure 2.3

Bar chart of the political party affiliation data in Table 2.1

Section 2.3
 Organizing Quantitative Data

PEARSON

Table 2.4

Number of TV sets in each of 50 randomly selected households.

1	1	1	2	6	3	3	4	2	4
3	2	1	5	2	1	3	6	2	2
3	1	1	4	3	2	2	2	2	3
0	3	1	2	1	2	3	1	1	3
3	2	1	2	1	1	3	1	5	1

Table 2.5

Frequency and relative-frequency distributions, using singlevalue grouping, for the number-of-TVs data in Table 2.4

Number of TVs	Frequency	Relative frequency
0	1	0.02
1	16	0.32
2	14	0.28
3	12	0.24
4	3	0.06
5	2	0.04
6	2	0.04
	50	1.00

Table 2.6

Days to maturity for 40 short-term investments

$$
\begin{array}{llllllll}
70 & 64 & 99 & 55 & 64 & 89 & 87 & 65 \\
62 & 38 & 67 & 70 & 60 & 69 & 78 & 39 \\
75 & 56 & 71 & 51 & 99 & 68 & 95 & 86 \\
57 & 53 & 47 & 50 & 55 & 81 & 80 & 98 \\
51 & 36 & 63 & 66 & 85 & 79 & 83 & 70
\end{array}
$$

Table 2.7

Frequency and relative-frequency distributions, using limit grouping, for the days-to-maturity data in Table 2.6

Days to maturity	Tally	Frequency	Relative frequency
$30-39$	III	3	0.075
$40-49$	I	1	0.025
$50-59$	IH III	8	0.200
$60-69$	HI I I	10	0.250
$70-79$	HI II	7	0.175
$80-89$	HI II	7	0.175
$90-99$	IIII	4	0.100
		40	1.000

Definition 2.7

Terms Used in Limit Grouping

Lower class limit: The smallest value that could go in a class.
Upper class limit: The largest value that could go in a class.
Class width: The difference between the lower limit of a class and the lower limit of the next-higher class.

Class mark: The average of the two class limits of a class.

Definition 2.8

Terms Used in Cutpoint Grouping

Lower class cutpoint: The smallest value that could go in a class.
Upper class cutpoint: The largest value that could go in the next-higher class (equivalent to the lower cutpoint of the next-higher class).

Class width: The difference between the cutpoints of a class.
Class midpoint: The average of the two cutpoints of a class.

Definition 2.9

Histogram

A histogram displays the classes of the quantitative data on a horizontal axis and the frequencies (relative frequencies, percents) of those classes on a vertical axis. The frequency (relative frequency, percent) of each class is represented by a vertical bar whose height is equal to the frequency (relative frequency, percent) of that class. The bars should be positioned so that they touch each other.

- For single-value grouping, we use the distinct values of the observations to label the bars, with each such value centered under its bar.
- For limit grouping or cutpoint grouping, we use the lower class limits (or, equivalently, lower class cutpoints) to label the bars. Note: Some statisticians and technologies use class marks or class midpoints centered under the bars.

Figure 2.4

Single-value grouping. Number of TVs per household:
(a) frequency histogram; (b) relative-frequency histogram

Television Sets per Household

(a)

Television Sets per Household

(b)

Figure 2.5

Limit grouping. Days to maturity: (a) frequency histogram; (b) relativefrequency histogram

Table 2.11 \& Figure 2.7

Prices, in dollars, of 16 DVD players

210	219	214	197
224	219	199	199
208	209	215	199
212	212	219	210

Prices of DVD Players

Table 2.12 \& Figure 2.8

Days to maturity for 40 short-term investments

Constructing a stem-and-leaf diagram for the days-to-maturity data

Stems Leaves

3	869
4	7
5	71635105
6	2473640985
7	0510980
8	5917036
9	9958

(a)

3	68951
4	7
5	01135567
6	0234456789
7	0001589
8	0135679
9	5899

(b)

70	64	99	55	64	89	87	65
62	38	67	70	60	69	78	39
75	56	71	51	99	68	95	86
57	53	47	50	55	81	80	98
51	36	63	66	85	79	83	70
7							
789							

Table 2.13 \& Figure 2.9

Cholesterol levels for 20 high-level patients

210	209	212	208
217	207	210	203
208	210	210	199
215	221	213	218
202	218	200	214

Stem-and-leaf diagram for cholesterol levels: (a) one line per stem; (b) two lines per stem

19	9
20	0237889
21	00002345788
22	1

(a)

19	
19	9
20	023
20	7889
21	0000234
21	5788
22	1
22	

(b)

Section 2.4

Distribution Shapes

PEARSON

Definition 2.10

Distribution of a Data Set

The distribution of a data set is a table, graph, or formula that provides the values of the observations and how often they occur.

Figure 2.10

Relative-frequency histogram and approximating smooth curve for the distribution of heights

Figure 2.11

Common distribution shapes

(a) Bell shaped

(d) Reverse J shaped

(g) Left skewed

(b) Triangular

(e) J shaped

(h) Bimodal

(c) Uniform (or rectangular)

(f) Right skewed

(i) Multimodal

Figure 2.12

Relative-frequency histogram for household size

(a)

(b)

Definition 2.12

Population and Sample Distributions; Distribution of a Variable

The distribution of population data is called the population distribution, or the distribution of the variable.

The distribution of sample data is called a sample distribution.

Population Distribution

(a)

Figure 2.13

Population distribution and six sample distributions for household size

(b)

Key Fact 2.1

Population and Sample Distributions

For a simple random sample, the sample distribution approximates the population distribution (i.e., the distribution of the variable under consideration). The larger the sample size, the better the approximation tends to be.

