Introductory STATISTICS

9TH EDITION

WEีlss

Chapter 3

Descriptive Measures

PEARSON

Section 3.1

Measures of Center

PEARSON

Definition 3.1

Mean of a Data Set

The mean of a data set is the sum of the observations divided by the number of observations.

Tables 3.1, 3.2 \& 3.4

Data Set I

300	300	300	940	300						
300	400	300	400							
450	800	450	1050		\quad	$\$ 300$	300	940	450	400
---:	---:	---:	---:	---:						
400	300	300	1050	300						

Means, medians, and modes of salaries in Data Set I and Data Set II

Measure of center	Definition	Data Set I	Data Set II
Mean	Sum of observations	$\$ 483.85$	$\$ 474.00$
Number of observations			
Median	Middle value in ordered list	$\$ 400.00$	$\$ 350.00$

Definition 3.2

Median of a Data Set

Arrange the data in increasing order.

- If the number of observations is odd, then the median is the observation exactly in the middle of the ordered list.
- If the number of observations is even, then the median is the mean of the two middle observations in the ordered list.

In both cases, if we let n denote the number of observations, then the median is at position $(n+1) / 2$ in the ordered list.

Definition 3.3

Mode of a Data Set

Find the frequency of each value in the data set.

- If no value occurs more than once, then the data set has no mode.
- Otherwise, any value that occurs with the greatest frequency is a mode of the data set.

Figure 3.1

Relative positions of the mean and median for (a) right-skewed, (b) symmetric, and (c) left-skewed distributions

(a) Right skewed

(b) Symmetric

(c) Left skewed

Definition 3.4

Sample Mean

For a variable x, the mean of the observations for a sample is called a sample mean and is denoted $\overline{\mathbf{x}}$. Symbolically,

$$
\bar{x}=\frac{\Sigma x_{i}}{n}
$$

where n is the sample size.

Section 3.2

Measures of Variation

PEARSON

Figure 3.2

Five starting players on two basketball teams

Figure 3.3

Shortest and tallest starting players on the teams

Team I

Feet and inches Inches

6'
6'6"
78

Team II

5'7"
7'
67
84

Definition 3.5

Range of a Data Set

The range of a data set is given by the formula

$$
\text { Range }=\text { Max }- \text { Min }
$$

where Max and Min denote the maximum and minimum observations, respectively.

Definition 3.6

Sample Standard Deviation

For a variable x, the standard deviation of the observations for a sample is called a sample standard deviation. It is denoted s_{x} or, when no confusion will arise, simply s. We have

$$
s=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

where n is the sample size and \bar{x} is the sample mean.

Formula 3.1

Computing Formula for a Sample Standard Deviation

A sample standard deviation can be computed using the formula

$$
s=\sqrt{\frac{\Sigma x_{i}^{2}-\left(\Sigma x_{i}\right)^{2} / n}{n-1}}
$$

where n is the sample size.

Tables 3.10 \& 3.11

Data sets that have different variation

Data Set I	41	44	45	47	47	48	51	53	58	66
Data Set II	20	37	48	48	49	50	53	61	64	70

Means and standard deviations of the data sets in Table 3.10

$$
\begin{array}{c|c}
\text { Data Set I } & \text { Data Set II } \\
\hline \bar{x}=50.0 & \bar{x}=50.0 \\
s=7.4 & s=14.2
\end{array}
$$

Figure 3.5

Figure 3.6

Section 3.3
 The Five-Number
 Summary; Boxplots

PEARSON

Definition 3.7

Quartiles

Arrange the data in increasing order and determine the median.

- The first quartile is the median of the part of the entire data set that lies at or below the median of the entire data set.
- The second quartile is the median of the entire data set.
- The third quartile is the median of the part of the entire data set that lies at or above the median of the entire data set.

Definition 3.8

Interquartile Range

The interquartile range, or IQR, is the difference between the first and third quartiles; that is, $\operatorname{IQR}=Q_{3}-Q_{1}$.

Definition 3.9

Five-Number Summary

The five-number summary of a data set is $\operatorname{Min}, Q_{1}, Q_{2}, Q_{3}$, Max.

Definition 3.10

Lower and Upper Limits

The lower limit and upper limit of a data set are
Lower limit $=Q_{1}-1.5 \cdot \mathrm{IQR}$;
Upper limit $=Q_{3}+1.5 \cdot$ I IR .

Procedure 3.1

To Construct a Boxplot

Step 1 Determine the quartiles.
Step 2 Determine potential outliers and the adjacent values.
Step 3 Draw a horizontal axis on which the numbers obtained in Steps 1 and 2 can be located. Above this axis, mark the quartiles and the adjacent values with vertical lines.

Step 4 Connect the quartiles to make a box, and then connect the box to the adjacent values with lines.

Step 5 Plot each potential outlier with an asterisk.

Figure 3.9

Section 3.4
 Descriptive Measures for Populations; Use of Samples

PEARSON

Definition 3.11

Population Mean (Mean of a Variable)

For a variable x, the mean of all possible observations for the entire population is called the population mean or mean of the variable \boldsymbol{x}. It is denoted $\boldsymbol{\mu}_{\boldsymbol{x}}$ or, when no confusion will arise, simply $\boldsymbol{\mu}$. For a finite population,

$$
\mu=\frac{\Sigma x_{i}}{N}
$$

where N is the population size.

Definition 3.12

Population Standard Deviation (Standard Deviation of a Variable)

For a variable x, the standard deviation of all possible observations for the entire population is called the population standard deviation or standard deviation of the variable \boldsymbol{x}. It is denoted $\sigma_{\boldsymbol{x}}$ or, when no confusion will arise, simply $\boldsymbol{\sigma}$. For a finite population, the defining formula is

$$
\sigma=\sqrt{\frac{\Sigma\left(x_{i}-\mu\right)^{2}}{N}}
$$

where N is the population size.
The population standard deviation can also be found from the computing formula

$$
\sigma=\sqrt{\frac{\Sigma x_{i}^{2}}{N}-\mu^{2}}
$$

Figure 3.13 \& Definition 3.13

Population and sample for bolt diameters
Population Data

Parameter and Statistic

Parameter: A descriptive measure for a population.
Statistic: A descriptive measure for a sample.

Definition 3.14 \& 3.15

Standardized Variable

For a variable x, the variable

$$
z=\frac{x-\mu}{\sigma}
$$

is called the standardized version of x or the standardized variable corresponding to the variable x.

z-Score

For an observed value of a variable x, the corresponding value of the standardized variable z is called the \boldsymbol{z}-score of the observation. The term standard score is often used instead of z-score.

