

Chapter 3

Descriptive Measures

Section 3.1 Measures of Center

Mean of a Data Set

The **mean** of a data set is the sum of the observations divided by the number of observations.

Tables 3.1, 3.2 & 3.4

Data Set I

\$300	300	300	940	300
300	400	300	400	
450	800	450	1050	

Data Set II

\$300	300	940	450	400
4000	200	2.0		
400	300	300	1050	300
100	500	500	1050	500

Means, medians, and modes of salaries in Data Set I and Data Set II

Measure of center	Definition	Data Set I	Data Set II	
Mean	Sum of observations Number of observations	\$483.85	\$474.00	
Median	Middle value in ordered list	\$400.00	\$350.00	
Mode	Most frequent value	\$300.00	\$300.00	

Median of a Data Set

Arrange the data in increasing order.

- If the number of observations is odd, then the **median** is the observation exactly in the middle of the ordered list.
- If the number of observations is even, then the **median** is the mean of the two middle observations in the ordered list.

In both cases, if we let *n* denote the number of observations, then the median is at position (n + 1) / 2 in the ordered list.

Mode of a Data Set

Find the frequency of each value in the data set.

- If no value occurs more than once, then the data set has no mode.
- Otherwise, any value that occurs with the greatest frequency is a **mode** of the data set.

Figure 3.1

Relative positions of the mean and median for (a) right-skewed, (b) symmetric, and (c) left-skewed distributions

Sample Mean

For a variable x, the mean of the observations for a sample is called a **sample mean** and is denoted \bar{x} . Symbolically,

$$\bar{x} = \frac{\sum x_i}{n}$$
,

where *n* is the sample size.

Section 3.2 Measures of Variation

Copyright © 2012, 2008, 2005 Pearson Education, Inc.

Slide 3-10

Figure 3.2

Five starting players on two basketball teams

Shortest and tallest starting players on the teams

Team I

Team II

Range of a Data Set

The range of a data set is given by the formula

Range = Max - Min,

where Max and Min denote the maximum and minimum observations, respectively.

Sample Standard Deviation

For a variable x, the standard deviation of the observations for a sample is called a **sample standard deviation**. It is denoted s_x or, when no confusion will arise, simply s. We have

$$s = \sqrt{\frac{\Sigma(x_i - \bar{x})^2}{n - 1}},$$

where *n* is the sample size and \bar{x} is the sample mean.

Formula 3.1

Computing Formula for a Sample Standard Deviation

A sample standard deviation can be computed using the formula

$$s = \sqrt{\frac{\Sigma x_i^2 - (\Sigma x_i)^2/n}{n-1}},$$

where *n* is the sample size.

Tables 3.10 & 3.11

Data sets that have different variation

Data Set I	41	44	45	47	47	48	51	53	58	66
Data Set II	20	37	48	48	49	50	53	61	64	70

Means and standard deviations of the data sets in Table 3.10

Data Set I	Data Set II			
$\bar{x} = 50.0$ $s = 7.4$	$\bar{x} = 50.0$ s = 14.2			

Section 3.3 The Five-Number Summary; Boxplots

Quartiles

Arrange the data in increasing order and determine the median.

- The **first quartile** is the median of the part of the entire data set that lies at or below the median of the entire data set.
- The second quartile is the median of the entire data set.
- The **third quartile** is the median of the part of the entire data set that lies at or above the median of the entire data set.

Interquartile Range

The **interquartile range**, or **IQR**, is the difference between the first and third quartiles; that is, $IQR = Q_3 - Q_1$.

Five-Number Summary

The **five-number summary** of a data set is Min, Q_1 , Q_2 , Q_3 , Max.

Lower and Upper Limits

The lower limit and upper limit of a data set are

Lower limit = $Q_1 - 1.5 \cdot IQR$; Upper limit = $Q_3 + 1.5 \cdot IQR$.

Procedure 3.1

To Construct a Boxplot

Step 1 Determine the quartiles.

Step 2 Determine potential outliers and the adjacent values.

Step 3 Draw a horizontal axis on which the numbers obtained in Steps 1 and 2 can be located. Above this axis, mark the quartiles and the adjacent values with vertical lines.

Step 4 Connect the quartiles to make a box, and then connect the box to the adjacent values with lines.

Step 5 Plot each potential outlier with an asterisk.

Figure 3.9

Section 3.4 Descriptive Measures for Populations; Use of Samples

Population Mean (Mean of a Variable)

For a variable x, the mean of all possible observations for the entire population is called the **population mean** or **mean of the variable x.** It is denoted μ_x or, when no confusion will arise, simply μ . For a finite population,

$$\mu = \frac{\Sigma x_i}{N},$$

where N is the population size.

Population Standard Deviation (Standard Deviation of a Variable)

For a variable x, the standard deviation of all possible observations for the entire population is called the **population standard deviation** or **standard deviation** or **standard deviation** of **the variable x.** It is denoted σ_x or, when no confusion will arise, simply σ . For a finite population, the defining formula is

$$\sigma = \sqrt{\frac{\Sigma(x_i - \mu)^2}{N}},$$

where N is the population size.

The population standard deviation can also be found from the computing formula

$$\sigma = \sqrt{\frac{\Sigma x_i^2}{N} - \mu^2}.$$

Figure 3.13 & Definition 3.13

Population and sample for bolt diameters

Population Data

Parameter and Statistic

Parameter: A descriptive measure for a population.

Statistic: A descriptive measure for a sample.

Definition 3.14 & 3.15

Standardized Variable

For a variable x, the variable

$$z = \frac{x - \mu}{\sigma}$$

is called the **standardized version** of *x* or the **standardized variable** corresponding to the variable *x*.

z-Score

For an observed value of a variable *x*, the corresponding value of the standardized variable *z* is called the *z*-score of the observation. The term **standard score** is often used instead of *z*-score.