

Chapter 4

Probability Concepts

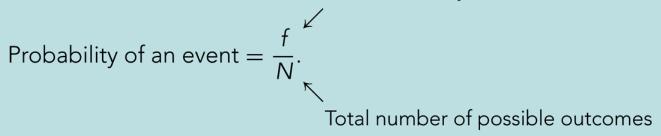
Section 4.1 Probability Basics

Definition 4.1

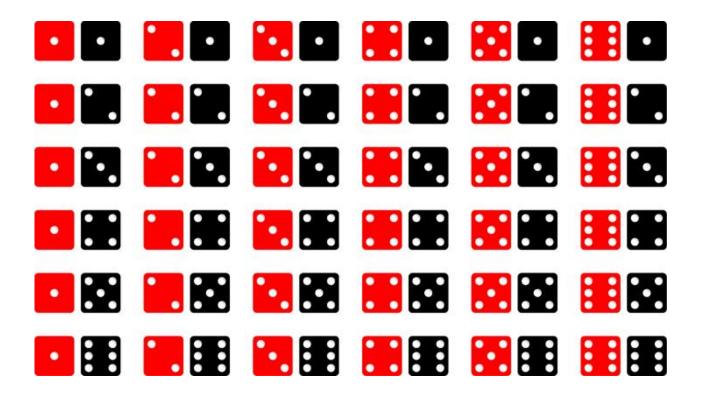
Probability for Equally Likely Outcomes (f/N Rule)

Suppose an experiment has N possible outcomes, all equally likely. An event that can occur in f ways has probability f/N of occurring:

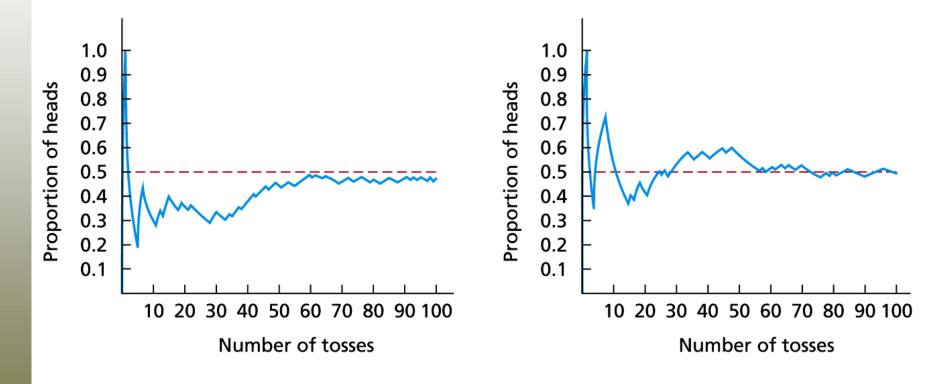
Number of ways event can occur



Possible outcomes for rolling a pair of dice



Two computer simulations of tossing a balanced coin 100 times



Key Fact 4.1

Basic Properties of Probabilities

Property 1: The probability of an event is always between 0 and 1, inclusive. **Property 2:** The probability of an event that cannot occur is 0. (An event that cannot occur is called an **impossible event.**)

Property 3: The probability of an event that must occur is 1. (An event that must occur is called a **certain event.**)

Section 4.2 Events

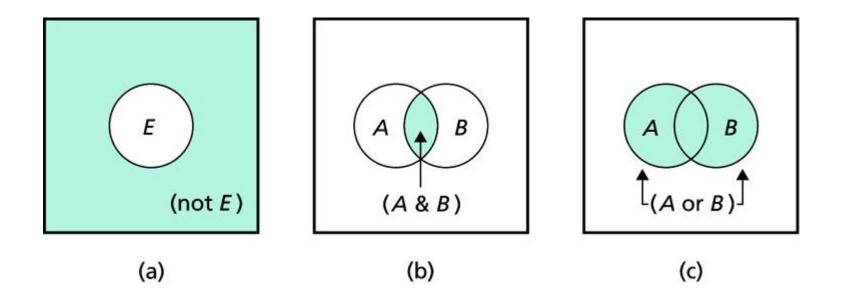
Definition 4.2

Sample Space and Event

Sample space: The collection of all possible outcomes for an experiment.

Event: A collection of outcomes for the experiment, that is, any subset of the sample space. An event **occurs** if and only if the outcome of the experiment is a member of the event.

Venn diagrams for (a) event (not E), (b) event (A & B), and (c) event (A or B)



Definition 4.3

Relationships Among Events

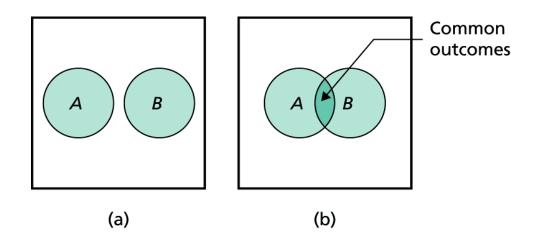
- (not E): The event "E does not occur"
- (A & B): The event "both A and B occur"
- (A or B): The event "either A or B or both occur"

Definition 4.4

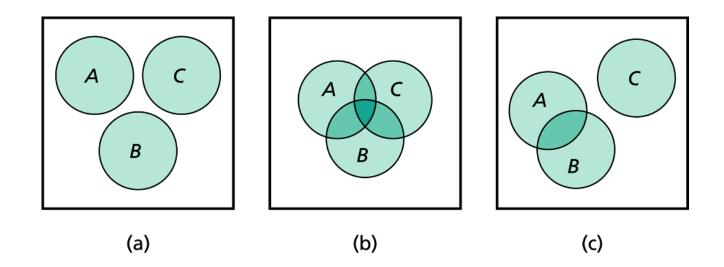
Mutually Exclusive Events

Two or more events are **mutually exclusive events** if no two of them have outcomes in common.

(a) Two mutually exclusive events;(b) two non-mutually exclusive events



(a) Three mutually exclusive events;(b) three non-mutually exclusive events;(c) three non-mutually exclusive events



Some Rules of Probability

The Special Addition Rule

If event A and event B are mutually exclusive, then

P(A or B) = P(A) + P(B).

More generally, if events A, B, C, ... are mutually exclusive, then

 $P(A \text{ or } B \text{ or } C \text{ or } \cdots) = P(A) + P(B) + P(C) + \cdots$

The Complementation Rule

For any event E,

P(E) = 1 - P(not E).

Copyright © 2012, 2008, 2005 Pearson Education, Inc.

The General Addition Rule

If A and B are any two events, then

P(A or B) = P(A) + P(B) - P(A & B).

Section 4.4 Contingency Tables; Joint and Marginal Probabilities

Table 4.6 Contingency table for age and rank of faculty members

	Rank								
		Full professor <i>R</i> 1	Associate professor R ₂	Assistant professor <i>R</i> ₃	Instructor R ₄	Total			
	Under 30 A_1	2	3	57	6	68			
	30–39 A ₂	52	170	163	17	402			
Age (yr)	40–49 A ₃	156	125	61	6	348			
	50–59 A4	145	68	36	4	253			
	60 & over A ₅	75	15	3	0	93			
	Total	430	381	320	33	1164			

Copyright © 2012, 2008, 2005 Pearson Education, Inc.

Table 4.7 Joint probability distribution corresponding to Table 4.6

	Rank								
		Full professor <i>R</i> 1	Associate professor R ₂	Assistant professor <i>R</i> 3	Instructor R ₄	$P(A_i)$			
	Under 30 A_1	0.002	0.003	0.049	0.005	0.058			
(30–39 A ₂	0.045	0.146	0.140	0.015	0.345			
Age (yr)	40–49 A ₃	0.134	0.107	0.052	0.005	0.299			
	50–59 A ₄	0.125	0.058	0.031	0.003	0.217			
	60 & over A ₅	0.064 0.013		0.003	0.000	0.080			
	$P(R_j)$	0.369	0.327	0.275	0.028	1.000			

Copyright © 2012, 2008, 2005 Pearson Education, Inc.

Section 4.5 Conditional Probability

Definition 4.6

Conditional Probability

The probability that event *B* occurs given that event *A* occurs is called a **conditional probability**. It is denoted $P(B \mid A)$, which is read "the probability of *B* given *A*." We call *A* the **given event**.

The Conditional Probability Rule

If A and B are any two events with P(A) > 0, then

$$P(B \mid A) = \frac{P(A \& B)}{P(A)}.$$

Table 4.9

Joint probability distribution of marital status and gender

	Marital status								
		SingleMarried M_1 M_2		Widowed M ₃	Divorced M ₄	$P(S_i)$			
Gender	Male S ₁	0.138	0.290	0.012	0.044	0.484			
	Female S ₂	0.114	0.291	0.051	0.060	0.516			
	$P(M_j)$	0.252	0.581	0.063	0.104	1.000			

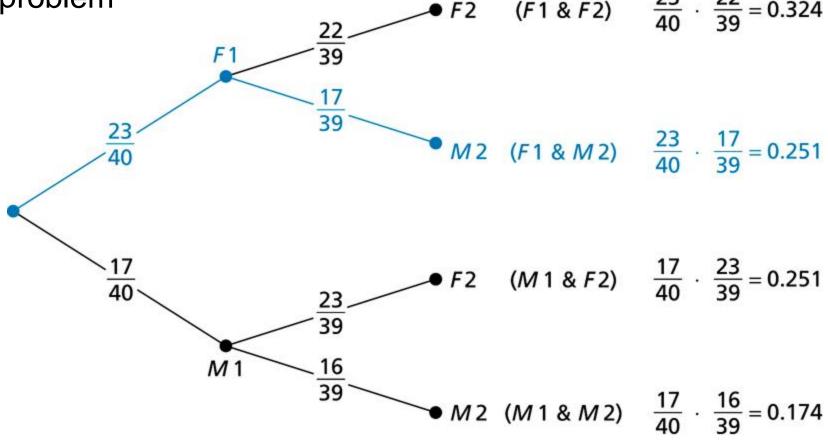
Section 4.6 The Multiplication Rule; Independence

The General Multiplication Rule

If A and B are any two events, then

 $P(A \& B) = P(A) \cdot P(B | A).$

Tree diagram for student-selectionEventProbabilityproblemF2(F1 & F2) $\frac{23}{40} \cdot \frac{22}{39} = 0.324$



Definition 4.7

Independent Events

Event *B* is said to be **independent** of event *A* if P(B | A) = P(B).

The Special Multiplication Rule

If events A, B, C, \ldots are independent, then

 $P(A \& B \& C \& \cdots) = P(A) \cdot P(B) \cdot P(C) \cdots$

Section 4.7 Bayes's Rule

Table 4.11 & 4.12

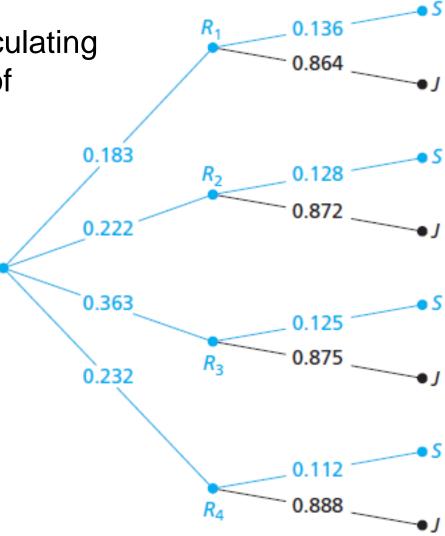
Percentage distribution for region of residence and percentage of seniors in each region

Region	Percentage of U.S. population	Percentage seniors		
Northeast	18.3	13.6		
Midwest	22.2	12.8		
South	36.3	12.5		
West	23.2	11.2		
	100.0			

Probabilities derived from Table 4.11

 $\begin{array}{l} P(R_1) = 0.183 \ P(S \mid R_1) = 0.136 \\ P(R_2) = 0.222 \ P(S \mid R_2) = 0.128 \\ P(R_3) = 0.363 \ P(S \mid R_3) = 0.125 \\ P(R_4) = 0.232 \ P(S \mid R_4) = 0.112 \end{array}$

Tree diagram for calculating P(S), using the rule of total probability



Section 4.8 Counting Rules

Definition 4.8

Factorials

The product of the first *k* positive integers (counting numbers) is called *k* factorial and is denoted *k*!. In symbols,

 $k! = k(k-1)\cdots 2\cdot 1.$

We also define 0! = 1.

Table 4.14

Possible permutations of three letters from the collection of five letters

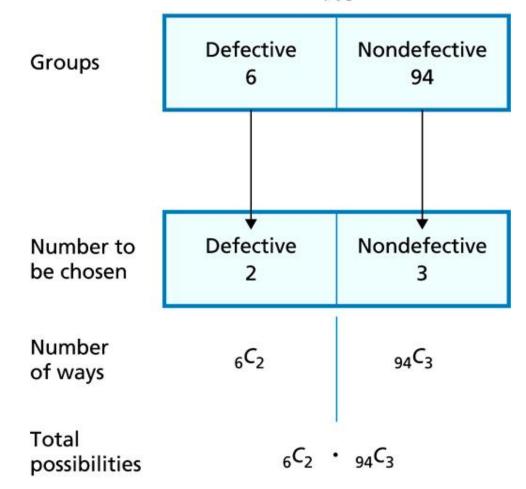
abc	abd	abe	acd	ace	ade	bcd	bce	bde	cde
acb	adb	aeb	adc	aec	aed	bdc	bec	bed	ced
bac	bad	bae	cad	cae	dae	cbd	cbe	dbe	dce
bca	bda	bea	cda	сеа	dea	cdb	ceb	deb	dec
cab	dab	eab	dac	eac	ead	dbc	ebc	ebd	ecd
cba	dba	eba	dca	еса	eda	dcb	ecb	edb	edc

The Permutations Rule

The number of possible permutations of r objects from a collection of m objects is given by the formula

$${}_mP_r=\frac{m!}{(m-r)!}.$$

Calculating the number of outcomes in which exactly 2 of the 5 TVs selected are defective TVs



Copyright © 2012, 2008, 2005 Pearson Education, Inc.