Introductory STATISTICS

9TH EDITION

WEีlss

Chapter 4

Probability Concepts

PEARSON

Section 4.1 Probability Basics

PEARSON

Definition 4.1

Probability for Equally Likely Outcomes (f / N Rule)

Suppose an experiment has N possible outcomes, all equally likely. An event that can occur in f ways has probability f / N of occurring:

Figure 4.1

Possible outcomes for rolling a pair of dice

-

Figure 4.2

Two computer simulations of tossing a balanced coin 100 times

Key Fact 4.1

Basic Properties of Probabilities

Property 1: The probability of an event is always between 0 and 1 , inclusive.
Property 2: The probability of an event that cannot occur is 0 . (An event that cannot occur is called an impossible event.)
Property 3: The probability of an event that must occur is 1. (An event that must occur is called a certain event.)

Section 4.2

Events

PEARSON

Definition 4.2

Sample Space and Event

Sample space: The collection of all possible outcomes for an experiment.

Event: A collection of outcomes for the experiment, that is, any subset of the sample space. An event occurs if and only if the outcome of the experiment is a member of the event.

Figure 4.9

Venn diagrams for (a) event (not E), (b) event (A \& B), and (c) event (A or B)

(a)

(b)

(c)

Definition 4.3

Relationships Among Events
(not E): The event " E does not occur"
(A \& B): The event "both A and B occur"
(A or B): The event "either A or B or both occur"

Definition 4.4

Mutually Exclusive Events

Two or more events are mutually exclusive events if no two of them have outcomes in common.

Figure 4.14

(a) Two mutually exclusive events; (b) two non-mutually exclusive events

(a)

(b)

Figure 4.15

(a) Three mutually exclusive events;
(b) three non-mutually exclusive events;
(c) three non-mutually exclusive events

(a)

(b)

(c)

Section 4.3

Some Rules of Probability

PEARSON

Formula 4.1

The Special Addition Rule

If event A and event B are mutually exclusive, then

$$
P(A \text { or } B)=P(A)+P(B) \text {. }
$$

More generally, if events A, B, C, \ldots are mutually exclusive, then

$$
P(A \text { or } B \text { or } C \text { or } \cdots)=P(A)+P(B)+P(C)+\cdots .
$$

Formula 4.2

The Complementation Rule

For any event E,

$$
P(E)=1-P(\text { not } E) .
$$

Formula 4.3

The General Addition Rule

If A and B are any two events, then

$$
P(A \text { or } B)=P(A)+P(B)-P(A \& B) .
$$

Section 4.4
 Contingency Tables; Joint and Marginal Probabilities

PEARSON

Table 4.6
 Contingency table for age and rank of faculty members

	Rank				
	Full professor R_{1}	Associate professor R_{2}	Assistant professor R_{3}	Instructor R_{4}	Total
Under 30 A_{1}	2	3	57	6	68
$30-39$ A_{2}	52	170	163	17	402
$40-49$ A_{3}	156	125	61	6	348
$50-59$ A_{4}	145	68	36	4	253
$60 \&$ over A_{5}	75	15	3	0	93
Total	430	381	320	33	1164

Table 4.7

Joint probability distribution corresponding to Table 4.6

	Rank					
	Full professor R_{1}	Associate professor R_{2}	Assistant professor R_{3}	Instructor R_{4}	$\boldsymbol{P}\left(\boldsymbol{A}_{\boldsymbol{i}}\right)$	
Under 30 A_{1}	0.002	0.003	0.049	0.005	0.058	
$30-39$ A_{2}	0.045	0.146	0.140	0.015	0.345	
$40-49$ A_{3}	0.134	0.107	0.052	0.005	0.299	
$50-59$ A_{4}	0.125	0.058	0.031	0.003	0.217	
$60 \&$ over A_{5}	0.064	0.013	0.003	0.000	0.080	
$\boldsymbol{P}\left(\boldsymbol{R}_{\boldsymbol{j}}\right)$	0.369	0.327	0.275	0.028	1.000	

Section 4.5
 Conditional Probability

PEARSON

Definition 4.6

Conditional Probability

The probability that event B occurs given that event A occurs is called a conditional probability. It is denoted $\boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A})$, which is read "the probability of B given A." We call A the given event.

Formula 4.4

The Conditional Probability Rule

If A and B are any two events with $P(A)>0$, then

$$
P(B \mid A)=\frac{P(A \& B)}{P(A)} .
$$

Table 4.9

Joint probability distribution of marital status and gender

Marital status					
	Single M_{1}	Married M_{2}	Widowed M_{3}	Divorced M_{4}	$\boldsymbol{P}\left(S_{i}\right)$
	0.138	0.290	0.012	0.044	0.484
Male S_{1}	0.114	0.291	0.051	0.060	0.516
Female S_{2}	0.252	0.581	0.063	0.104	1.000
$\boldsymbol{P}\left(\boldsymbol{M}_{\boldsymbol{j}}\right)$	0.0				

Section 4.6
 The Multiplication Rule; Independence

PEARSON

Formula 4.5

The General Multiplication Rule
If A and B are any two events, then

$$
P(A \& B)=P(A) \cdot P(B \mid A) .
$$

Figure 4.25

Tree diagram for student-selection problem

Event
$(F 1 \& F 2) \quad \frac{23}{40} \cdot \frac{22}{39}=0.324$

Definition 4.7

Independent Events

Event B is said to be independent of event A if $P(B \mid A)=P(B)$.

Formula 4.7

The Special Multiplication Rule

If events A, B, C, \ldots are independent, then

$$
P(A \& B \& C \& \cdots)=P(A) \cdot P(B) \cdot P(C) \cdots .
$$

Section 4.7

Bayes's Rule

PEARSON

Table 4.11 \& 4.12

Percentage distribution for region of residence and percentage of seniors in each region

Region	Percentage of U.S. population	Percentage seniors
Northeast	18.3	13.6
Midwest	22.2	12.8
South	36.3	12.5
West	23.2	11.2
	100.0	

Probabilities derived from Table 4.11

$$
\begin{aligned}
& P\left(R_{1}\right)=0.183 \quad P\left(S \mid R_{1}\right)=0.136 \\
& P\left(R_{2}\right)=0.222 P\left(S \mid R_{2}\right)=0.128 \\
& P\left(R_{3}\right)=0.363 \quad P\left(S \mid R_{3}\right)=0.125 \\
& P\left(R_{4}\right)=0.232 \quad P\left(S \mid R_{4}\right)=0.112
\end{aligned}
$$

Figure 4.27

Tree diagram for calculating $\mathrm{P}(\mathrm{S})$, using the rule of total probability

Section 4.8
 Counting Rules

PEARSON

Definition 4.8

Factorials

The product of the first k positive integers (counting numbers) is called \mathbf{k} factorial and is denoted \mathbf{k} !. In symbols,

$$
k!=k(k-1) \cdots 2 \cdot 1 .
$$

We also define $0!=1$.

Table 4.14

Possible permutations of three letters from the collection of five letters
abc abd abe acd ace ade bcd bce bde cde $a c b$ adb aeb adc aec aed bdc bec bed ced bac bad bae cad cae dae cbd cbe dbe dce bca bda bea cda cea dea cdb ceb deb dec $c a b$ dab eab dac eac ead dbc ebc ebd ecd $c b a \quad d b a$ eba dca eca eda dcb ecb edb edc

Formula 4.10

The Permutations Rule

The number of possible permutations of r objects from a collection of $m o b-$ jects is given by the formula

$$
{ }_{m} P_{r}=\frac{m!}{(m-r)!} .
$$

Figure 4.29

Calculating the number of outcomes in which exactly 2 of the 5 TVs selected are defective

TVs

