## Introductory STATISTICS



WEISS

# Chapter 5

### Discrete Random Variables



# Section 5.1 Discrete Random Variables



and Probability Distributions

## Definitions 5.1 & 5.2

#### Random Variable

A **random variable** is a quantitative variable whose value depends on chance.

#### **Discrete Random Variable**

A discrete random variable is a random variable whose possible values can be listed.

## Definition 5.3

### **Probability Distribution and Probability Histogram**

**Probability distribution:** A listing of the possible values and corresponding probabilities of a discrete random variable, or a formula for the probabilities.

**Probability histogram:** A graph of the probability distribution that displays the possible values of a discrete random variable on the horizontal axis and the probabilities of those values on the vertical axis. The probability of each value is represented by a vertical bar whose height equals the probability.

# Table 5.2 & Figure 5.1

Probability distribution of the random variable X, the number of siblings of a randomly selected student

| Siblings x | Probability $P(X = x)$ |  |
|------------|------------------------|--|
| 0          | 0.200                  |  |
| 1          | 0.425                  |  |
| 2          | 0.275                  |  |
| 3          | 0.075                  |  |
| 4          | 0.025                  |  |
|            | 1.000                  |  |



(a) Histogram of proportions for the numbers of heads obtained in three tosses of a balanced dime for 1000 observations; (b) probability histogram for the number of heads obtained in three tosses of a balanced dime



### Section 5.2

# The Mean and Standard Deviation of a Discrete Random Variable



## Definition 5.4

#### Mean of a Discrete Random Variable

The mean of a discrete random variable X is denoted  $\mu_X$  or, when no confusion will arise, simply  $\mu$ . It is defined by

$$\mu = \sum x P(X = x).$$

The terms **expected value** and **expectation** are commonly used in place of the term *mean*.<sup>†</sup>

# Key Fact 5.3

#### Interpretation of the Mean of a Random Variable

In a large number of independent observations of a random variable X, the average value of those observations will approximately equal the mean,  $\mu$ , of X. The larger the number of observations, the closer the average tends to be to  $\mu$ .

Graphs showing the average number of busy tellers versus the number of observations for two simulations of 100 observations each





# Section 5.3 The Binomial Distribution



## Definition 5.8

#### **Bernoulli Trials**

Repeated trials of an experiment are called **Bernoulli trials** if the following three conditions are satisfied:

- 1. The experiment (each trial) has two possible outcomes, denoted generically  $\mathbf{s}$ , for success, and  $\mathbf{f}$ , for failure.
- 2. The trials are independent.
- 3. The probability of a success, called the **success probability** and denoted  $\boldsymbol{p}$ , remains the same from trial to trial.

## **Table 5.14**

Outcomes and probabilities for observing whether each of three people is alive at age 65

| Outcome | Probability                                        |  |  |
|---------|----------------------------------------------------|--|--|
| SSS     | (0.8)(0.8)(0.8) = 0.512                            |  |  |
| ssf     | (0.8)(0.8)(0.2) = 0.128                            |  |  |
| sfs     | (0.8)(0.2)(0.8) = 0.128                            |  |  |
| sff     | (0.8)(0.2)(0.2) = 0.032                            |  |  |
| fss     | (0.2)(0.8)(0.8) = 0.128                            |  |  |
| fsf     | (0.2)(0.8)(0.2) = 0.032                            |  |  |
| ##      | (0.2)(0.2)(0.8) = 0.032                            |  |  |
| fff     | (0.2)(0.2)(0.8) = 0.032<br>(0.2)(0.2)(0.2) = 0.008 |  |  |

### Tree diagram corresponding to Table 5.14



## Procedure 5.1

#### To Find a Binomial Probability Formula

#### **Assumptions**

- 1. n trials are to be performed.
- 2. Two outcomes, success or failure, are possible for each trial.
- **3.** The trials are independent.
- **4.** The success probability, *p*, remains the same from trial to trial.
- **Step 1** Identify a success.
- Step 2 Determine p, the success probability.
- Step 3 Determine n, the number of trials.
- Step 4 The binomial probability formula for the number of successes, X, is

$$P(X=x) = \binom{n}{x} p^x (1-p)^{n-x}.$$

Probability histograms for three different binomial distributions with parameter n = 6



## Formula 5.2

#### Mean and Standard Deviation of a Binomial Random Variable

The mean and standard deviation of a binomial random variable with parameters n and p are

$$\mu = np$$
 and  $\sigma = \sqrt{np(1-p)}$ ,

respectively.

# Section 5.4 The Poisson Distribution



## Formula 5.3

#### Poisson Probability Formula

Probabilities for a random variable X that has a Poisson distribution are given by the formula

$$P(X = x) = e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x = 0, 1, 2, ...,$$

where  $\lambda$  is a positive real number and  $e \approx 2.718$ . (Most calculators have an ekey.) The random variable X is called a **Poisson random variable** and is said to have the **Poisson distribution** with parameter  $\lambda$ .

## Table 5.16

Partial probability distribution of the random variable X, the number of patients arriving at the emergency room between 6:00 P.M. and 7:00 P.M.

| Number arriving x | Probability $P(X = x)$ | Number arriving x | Probability $P(X = x)$ |
|-------------------|------------------------|-------------------|------------------------|
| 0                 | 0.001                  | 10                | 0.068                  |
| 1                 | 0.007                  | 11                | 0.043                  |
| 2                 | 0.024                  | 12                | 0.025                  |
| 3                 | 0.055                  | 13                | 0.013                  |
| 4                 | 0.095                  | 14                | 0.006                  |
| 5                 | 0.131                  | 15                | 0.003                  |
| 6                 | 0.151                  | 16                | 0.001                  |
| 7                 | 0.149                  | 17                | 0.001                  |
| 8                 | 0.128                  | 18                | 0.000                  |
| 9                 | 0.098                  |                   |                        |

Partial probability histogram for the random variable X, the number of patients arriving at the emergency room between 6:00 P.M. and 7:00 P.M.



## Procedure 5.2

# To Approximate Binomial Probabilities by Using a Poisson Probability Formula

Step 1 Find n, the number of trials, and p, the success probability.

**Step 2** Continue only if  $n \ge 100$  and  $np \le 10$ .

**Step 3** Approximate the binomial probabilities by using the Poisson probability formula

$$P(X = x) = e^{-np} \frac{(np)^x}{x!}.$$