Introductory STATISTICS

9TH EDITION

WEีlss

Chapter 5

Discrete Random Variables

PEARSON

Section 5.1

Discrete Random Variables and Probability Distributions

PEARSON

Definitions 5.1 \& 5.2

Random Variable

A random variable is a quantitative variable whose value depends on chance.

Discrete Random Variable

A discrete random variable is a random variable whose possible values can be listed.

Definition 5.3

Probability Distribution and Probability Histogram

Probability distribution: A listing of the possible values and corresponding probabilities of a discrete random variable, or a formula for the probabilities.

Probability histogram: A graph of the probability distribution that displays the possible values of a discrete random variable on the horizontal axis and the probabilities of those values on the vertical axis. The probability of each value is represented by a vertical bar whose height equals the probability.

Table 5.2 \& Figure 5.1

Probability distribution of the random variable X , the number of siblings of a randomly selected student

Siblings \boldsymbol{x}	Probability $\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$
0	0.200
1	0.425
2	0.275
3	0.075
4	0.025
	1.000

Number of siblings
Slide 5-6

Figure 5.2

(a) Histogram of proportions for the numbers of heads obtained in three tosses of a balanced dime for 1000 observations; (b) probability histogram for the number of heads obtained in three tosses of a balanced dime

(a)

(b)

Section 5.2

The Mean and Standard Deviation of a Discrete Random Variable

PEARSON

Definition 5.4

Mean of a Discrete Random Variable

The mean of a discrete random variable \boldsymbol{X} is denoted $\boldsymbol{\mu}_{\boldsymbol{X}}$ or, when no confusion will arise, simply $\boldsymbol{\mu}$. It is defined by

$$
\mu=\Sigma \times P(X=x) .
$$

The terms expected value and expectation are commonly used in place of the term mean. ${ }^{\dagger}$

Key Fact 5.3

Interpretation of the Mean of a Random Variable

In a large number of independent observations of a random variable X, the average value of those observations will approximately equal the mean, μ, of X. The larger the number of observations, the closer the average tends to be to μ.

Figure 5.3

Graphs showing the average number of busy tellers versus the number of observations for two simulations of 100 observations each

(a)
(b)

Section 5.3 The Binomial Distribution

PEARSON

Definition 5.8

Bernoulli Trials

Repeated trials of an experiment are called Bernoulli trials if the following three conditions are satisfied:

1. The experiment (each trial) has two possible outcomes, denoted generically \mathbf{s}, for success, and \mathbf{f}, for failure.
2. The trials are independent.
3. The probability of a success, called the success probability and denoted \mathbf{p}, remains the same from trial to trial.

Table 5.14

Outcomes and probabilities for observing whether each of three people is alive at age 65

Outcome	Probability
$s s s$	$(0.8)(0.8)(0.8)=0.512$
$s s f$	$(0.8)(0.8)(0.2)=0.128$
$s f s$	$(0.8)(0.2)(0.8)=0.128$
$s f f$	$(0.8)(0.2)(0.2)=0.032$
$f s s$	$(0.2)(0.8)(0.8)=0.128$
$f s f$	$(0.2)(0.8)(0.2)=0.032$
ffs	$(0.2)(0.2)(0.8)=0.032$
fff	$(0.2)(0.2)(0.2)=0.008$

Figure 5.4

Tree diagram corresponding to Table 5.14

First
person
person

Third
person

Outcome \quad| Probability |
| :---: |

Slide 5-15

Procedure 5.1

To Find a Binomial Probability Formula

Assumptions

1. n trials are to be performed.
2. Two outcomes, success or failure, are possible for each trial.
3. The trials are independent.
4. The success probability, p, remains the same from trial to trial.

Step 1 Identify a success.
Step 2 Determine p, the success probability.
Step 3 Determine n, the number of trials.
Step 4 The binomial probability formula for the number of successes, X, is

$$
P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

Figure 5.6

Probability histograms for three different binomial distributions with parameter $\mathrm{n}=6$

Number of successes

$$
\text { (a) } p=0.25
$$

Right skewed

Number of successes
(b) $p=0.5$

Symmetric

Number of successes
(c) $p=0.75$

Left skewed

Formula 5.2

Mean and Standard Deviation of a Binomial Random Variable

The mean and standard deviation of a binomial random variable with parameters n and p are

$$
\mu=n p \quad \text { and } \sigma=\sqrt{n p(1-p)},
$$

respectively.

Section 5.4 The Poisson Distribution

PEARSON

Formula 5.3

Poisson Probability Formula

Probabilities for a random variable X that has a Poisson distribution are given by the formula

$$
P(X=x)=e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x=0,1,2, \ldots,
$$

where λ is a positive real number and $e \approx 2.718$. (Most calculators have an ekey.) The random variable X is called a Poisson random variable and is said to have the Poisson distribution with parameter λ.

Table 5.16

Partial probability distribution of the random variable X, the number of patients arriving at the emergency room between 6:00 P.M. and 7:00 P.M.

Number arriving \boldsymbol{x}	Probability $\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$	Number arriving \boldsymbol{x}	Probability $\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$
0	0.001	10	0.068
1	0.007	11	0.043
2	0.024	12	0.025
3	0.055	13	0.013
4	0.095	14	0.006
5	0.131	15	0.003
6	0.151	16	0.001
7	0.149	17	0.001
8	0.128	18	0.000
9	0.098		

Figure 5.7

Partial probability histogram for the random variable X, the number of patients arriving at the emergency room between 6:00 P.M. and 7:00 P.M.

Procedure 5.2

To Approximate Binomial Probabilities by Using a Poisson Probability Formula

Step 1 Find n, the number of trials, and p, the success probability.
Step 2 Continue only if $\boldsymbol{n} \geq \mathbf{1 0 0}$ and $n p \leq \mathbf{1 0}$.
Step 3 Approximate the binomial probabilities by using the Poisson probability formula

$$
P(X=x)=e^{-n p} \frac{(n p)^{x}}{x!} .
$$

