

# Chapter 6

#### **The Normal Distribution**



### Section 6.1 Introducing Normally Distributed Variables



#### Three normal distributions



#### Table 6.1

Frequency and relativefrequency distributions for heights

| Height (in.) | Frequency<br>f | Relative<br>frequency |
|--------------|----------------|-----------------------|
| 56–under 57  | 3              | 0.0009                |
| 57–under 58  | 6              | 0.0018                |
| 58–under 59  | 26             | 0.0080                |
| 59–under 60  | 74             | 0.0227                |
| 60–under 61  | 147            | 0.0450                |
| 61–under 62  | 247            | 0.0757                |
| 62–under 63  | 382            | 0.1170                |
| 63–under 64  | 483            | 0.1480                |
| 64–under 65  | 559            | 0.1713                |
| 65–under 66  | 514            | 0.1575                |
| 66–under 67  | 359            | 0.1100                |
| 67–under 68  | 240            | 0.0735                |
| 68–under 69  | 122            | 0.0374                |
| 69–under 70  | 65             | 0.0199                |
| 70–under 71  | 24             | 0.0074                |
| 71–under 72  | 7              | 0.0021                |
| 72–under 73  | 5              | 0.0015                |
| 73–under 74  | 1              | 0.0003                |
|              | 3264           | 1.0000                |



#### Standardizing normal distributions



Finding percentages for a normally distributed variable from areas under the standard normal curve



### Section 6.2 Areas Under the Standard Normal Curve



Using Table II to find the area under the standard normal curve that lies (a) to the left of a specified z-score, (b) to the right of a specified z-score, and (c) between two specified z-scores



#### Table 6.2

#### Areas under the standard normal curve

| Second decimal place in z |        |        |        |        |        |        |        |        |        |      |
|---------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|
| 0.09                      | 0.08   | 0.07   | 0.06   | 0.05   | 0.04   | 0.03   | 0.02   | 0.01   | 0.00   | z    |
|                           |        |        | •      |        |        |        |        |        |        | •    |
| •                         | •      | •      | •      | •      | •      | •      | •      | •      | •      | •    |
| •                         | •      | •      | •      | •      | •      | •      | •      | •      | •      | •    |
| 0.0233                    | 0.0239 | 0.0244 | 0.0250 | 0.0256 | 0.0262 | 0.0268 | 0.0274 | 0.0281 | 0.0287 | -1.9 |
| 0.0294                    | 0.0301 | 0.0307 | 0.0314 | 0.0322 | 0.0329 | 0.0336 | 0.0344 | 0.0351 | 0.0359 | -1.8 |
| 0.0367                    | 0.0375 | 0.0384 | 0.0392 | 0.0401 | 0.0409 | 0.0418 | 0.0427 | 0.0436 | 0.0446 | -1.7 |
| 0.0455                    | 0.0465 | 0.0475 | 0.0485 | 0.0495 | 0.0505 | 0.0516 | 0.0526 | 0.0537 | 0.0548 | -1.6 |
| 0.0559                    | 0.0571 | 0.0582 | 0.0594 | 0.0606 | 0.0618 | 0.0630 | 0.0643 | 0.0655 | 0.0668 | -1.5 |
|                           |        |        |        |        |        |        |        | •      | •      | •    |
| •                         |        |        |        |        |        |        |        |        |        |      |
|                           |        |        |        |        |        |        |        |        |        |      |

#### Figures 6.15 & 6.16 Finding z <sub>0.025</sub>





Finding z  $_{0.05}$ 





Copyright © 2012, 2008, 2005 Pearson Education, Inc.

### Section 6.3 Working with Normally Distributed Variables



#### Procedure 6.1

To Determine a Percentage or Probability for a Normally Distributed Variable

- **Step 1** Sketch the normal curve associated with the variable.
- **Step 2** Shade the region of interest and mark its delimiting *x*-value(s).
- **Step 3** Find the *z*-score(s) for the delimiting *x*-value(s) found in Step 2.

**Step 4** Use Table II to find the area under the standard normal curve delimited by the *z*-score(s) found in Step 3.

Determination of the percentage of people having IQs between 115 and 140



#### Key Fact 6.6 & Figure 6.20

#### The 68.26-95.44-99.74 Rule

Any normally distributed variable has the following properties.

**Property 1:** 68.26% of all possible observations lie within one standard deviation to either side of the mean, that is, between  $\mu - \sigma$  and  $\mu + \sigma$ .

**Property 2:** 95.44% of all possible observations lie within two standard deviations to either side of the mean, that is, between  $\mu - 2\sigma$  and  $\mu + 2\sigma$ .

**Property 3:** 99.74% of all possible observations lie within three standard deviations to either side of the mean, that is, between  $\mu - 3\sigma$  and  $\mu + 3\sigma$ .

These properties are illustrated in Fig. 6.20.



#### Procedure 6.2

To Determine the Observations Corresponding to a Specified Percentage or Probability for a Normally Distributed Variable

- **Step 1** Sketch the normal curve associated with the variable.
- **Step 2** Shade the region of interest.

**Step 3** Use Table II to determine the *z*-score(s) delimiting the region found in Step 2.

**Step 4** Find the *x*-value(s) having the *z*-score(s) found in Step 3.

### Section 6.4 Assessing Normality; Normal Probability Plots



#### Table 6.4

## Ordered data and normal scores

| Adjusted gross<br>income | Normal<br>score |
|--------------------------|-----------------|
| 7.8                      | -1.64           |
| 9.7<br>10.6              | -1.11 - 0.79    |
| 12.7<br>12.8             | -0.53<br>-0.31  |
| 18.1                     | -0.10           |
| 21.2<br>33.0             | 0.10<br>0.31    |
| 43.5<br>51.1             | 0.53            |
| 81.4                     | 1.11            |
| 93.1                     | 1.64            |

Normal probability plot for the sample of adjusted gross incomes



### Section 6.5 Normal Approximation to the Binomial Distribution



Probability histogram for X with superimposed normal curve





Copyright © 2012, 2008, 2005 Pearson Education, Inc.

#### Slide 6-23

#### Procedure 6.3

To Approximate Binomial Probabilities by Normal-Curve Areas

**Step 1** Find *n*, the number of trials, and *p*, the success probability.

**Step 2** Continue only if both np and n(1 - p) are 5 or greater.

**Step 3** Find  $\mu$  and  $\sigma$ , using the formulas  $\mu = np$  and  $\sigma = \sqrt{np(1-p)}$ .

**Step 4** Make the correction for continuity, and find the required area under the normal curve with parameters  $\mu$  and  $\sigma$ .