

Chapter 9

Hypothesis Tests for One Population Mean

Section 9.1 The Nature of Hypothesis Testing

Definition 9.1

Null and Alternative Hypotheses; Hypothesis Test

Null hypothesis: A hypothesis to be tested. We use the symbol H_0 to represent the null hypothesis.

Alternative hypothesis: A hypothesis to be considered as an alternative to the null hypothesis. We use the symbol H_a to represent the alternative hypothesis.

Hypothesis test: The problem in a hypothesis test is to decide whether the null hypothesis should be rejected in favor of the alternative hypothesis.

Definition 9.3

Significance Level

The probability of making a Type I error, that is, of rejecting a true null hypothesis, is called the **significance level**, , of a hypothesis test.

Section 9.2 Critical-Value Approach to Hypothesis Testing

Criterion for deciding whether to reject the null hypothesis

Rejection region, nonrejection region, and critical value for the golf-driving-distances hypothesis test

Graphical display of rejection regions for two-tailed, lefttailed, and right-tailed tests

Critical value(s) for a hypothesis test at the significance level α if the test is (a) two tailed, (b) left tailed, or (c) right tailed

Section 9.3 P-Value Approach to Hypothesis Testing

P-value for golf-driving-distances hypothesis test

Definition 9.5

P-Value

The *P*-value of a hypothesis test is the probability of getting sample data at least as inconsistent with the null hypothesis (and supportive of the alternative hypothesis) as the sample data actually obtained. We use the letter *P* to denote the *P*-value.

P-value for a one-mean z-test if the test is (a) two tailed, (b) left tailed, or (c) right tailed

Value of the test statistic and the P-value

Table 9.8

Guidelines for using the P-value to assess the evidence against the null hypothesis

<i>P</i> -value	Evidence against <i>H</i> ₀
P > 0.10	Weak or none
$0.05 < P \le 0.10$	Moderate
$0.01 < P \le 0.05$	Strong
$P \leq 0.01$	Very strong

Section 9.4 Hypothesis Tests for One Population Mean When Sigma Is Known

Procedure 9.1

One-Mean z-Test

Purpose To perform a hypothesis test for a population mean, μ

Assumptions

- **1.** Simple random sample
- 2. Normal population or large sample
- 3. σ known

Step 1 The null hypothesis is H_0 : $\mu = \mu_0$, and the alternative hypothesis is

 $\begin{array}{ccc} H_{a} \colon \mu \neq \mu_{0} \\ (\text{Two tailed}) \end{array} \text{ or } \begin{array}{ccc} H_{a} \colon \mu < \mu_{0} \\ (\text{Left tailed}) \end{array} \text{ or } \begin{array}{ccc} H_{a} \colon \mu > \mu_{0} \\ (\text{Right tailed}) \end{array}$

- **Step 2** Decide on the significance level, α .
- **Step 3** Compute the value of the test statistic

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

and denote that value z_0 .

Procedure 9.1 (cont.)

Step 5 If the value of the test statistic falls in the rejection region, reject H_0 ; otherwise, do not reject H_0 .

P-VALUE APPROACH

Step 5 If $P \le \alpha$, reject H_0 ; otherwise, do not reject H_0 .

Left tailed

Step 6 Interpret the results of the hypothesis test.

Note: The hypothesis test is exact for normal populations and is approximately correct for large samples from nonnormal populations.

Two tailed

Right tailed

Section 9.5 Hypothesis Tests for One Population Mean When Sigma Is Unknown

Estimating the P-value of a left-tailed t-test with a sample size of 12 and test statistic t = -1.938

Estimating the P-value of a two-tailed t-test with a sample size of 25 and test statistic t =-0.895

Procedure 9.2

One-Mean t-Test

Purpose To perform a hypothesis test for a population mean, μ

Assumptions

- **1.** Simple random sample
- 2. Normal population or large sample
- 3. σ unknown

Step 1 The null hypothesis is H_0 : $\mu = \mu_0$, and the alternative hypothesis is

 $\begin{array}{ccc} H_{a} \colon \mu \neq \mu_{0} \\ (\text{Two tailed}) \end{array} \text{ or } \begin{array}{ccc} H_{a} \colon \mu < \mu_{0} \\ (\text{Left tailed}) \end{array} \text{ or } \begin{array}{ccc} H_{a} \colon \mu > \mu_{0} \\ (\text{Right tailed}) \end{array}$

- **Step 2** Decide on the significance level, α .
- **Step 3** Compute the value of the test statistic

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

and denote that value t_0 .

Procedure 9.2 (cont.)

CRITICAL-VALUE APPROACH OR Step 4 The critical value(s) are $\pm t_{\alpha/2}$ l_{α} or or (Left tailed) (Right tailed) (Two tailed) with df = n - 1. Use Table IV to find the critical value(s). Reject! Do not !Reject Reject | Do not reject H_0 | Do not reject H_0 | Reject reject H₀ H_0 H_0 H_0 H_0 α/2 α/2 $-t_{\alpha}$ 0 $-t_{\alpha/2}$ 0 $t_{\alpha/2}$ 0 Two tailed Left tailed **Right tailed**

Step 5 If the value of the test statistic falls in the rejection region, reject H_0 ; otherwise, do not reject H_0 .

P-VALUE APPROACH

Step 4 The *t*-statistic has df = n - 1. Use Table IV to estimate the *P*-value, or obtain it exactly by using technology.

Step 5 If $P \leq \alpha$, reject H_0 ; otherwise, do not reject H_0 .

Step 6 Interpret the results of the hypothesis test.

Note: The hypothesis test is exact for normal populations and is approximately correct for large samples from nonnormal populations.

Section 9.6 The Wilcoxon Signed-Rank Test

Table 9.13

Sample of weekly food costs (\$)

143	169	149	135	161
138	152	150	141	159

Table 9.14

Steps for ranking the data in Table 9.13 according to distance and direction from the null hypothesis mean

	Cost (\$) <i>x</i>	Difference $D = x - 157$	D	Rank of D	Signed rank <i>R</i>
	143	-14	14	7	- 7
	138	-19	19	9	- 9
	169	12	12	6	6
	152	-5	5	3	- 3
	149	-8	8	5	- 5
	150	—7	7	4	- 4
	135	-22	22	10	-10
	141	-16	16	8	- 8
	161	4	4	2	2
	159	2	2	1	1
		t	Ť	1	Ť
Step 1	Subtract μ_0 from x.				
Step 2	Make each a positive by t absolute val	lifference aking ues.			
Step 3	Rank the ab. in order from to largest (1	solute differences n smallest (1) 0).			
Step 4	Give each ro sign in the L	ink the same sign Difference column.	as the		

Procedure 9.3

Wilcoxon Signed-Rank Test

Purpose To perform a hypothesis test for a population mean, μ

Assumptions

- **1.** Simple random sample
- 2. Symmetric population

Step 1 The null hypothesis is H_0 : $\mu = \mu_0$, and the alternative hypothesis is

$$\begin{array}{ccc} H_{a} \colon \mu \neq \mu_{0} \\ (\text{Two tailed}) \end{array} \text{ or } \begin{array}{ccc} H_{a} \colon \mu < \mu_{0} \\ (\text{Left tailed}) \end{array} \text{ or } \begin{array}{ccc} H_{a} \colon \mu > \mu_{0} \\ (\text{Right tailed}) \end{array}$$

- **Step 2** Decide on the significance level, α .
- **Step 3** Compute the value of the test statistic

W = sum of the positive ranks

and denote that value W_0 . To do so, construct a work table of the following form.

Observation x	Difference $D = x - \mu_0$	D	Rank of D	Signed rank <i>R</i>
•	•	•	•	•
•	•	•	•	•
		•	•	

Copyright © 2012, 2008, 2005 Pearson Education, Inc.

Procedure 9.3 (cont.)

Step 5 If the value of the test statistic falls in the rejection region, reject H_0 ; otherwise, do not reject H_0 .

P-VALUE APPROACH Step 4 Obtain the P-value by using technology. $\int_{W_0}^{P-value} P-value W P-v$

Step 5 If $P \le \alpha$, reject H_0 ; otherwise, do not reject H_0 .

Step 6 Interpret the results of the hypothesis test.

Section 9.7 Type II Error Probabilities; Power

Decision criterion for the gas mileage illustration ($\alpha = 0.05$, n = 30)

Figure 9.29 Determining the probability of a Type II error if = 25.8 mpg

Shaded area = 1 - 0.2206 = 0.7794

Slide 9-31

Definition 9.6

Power

The **power** of a hypothesis test is the probability of not making a Type II error, that is, the probability of rejecting a false null hypothesis. We have

Power = (Type II error) =

Table 9.16
Selected Type II
error probabilities
and powers for the
gas mileage
illustration
(=0.05=30)

$$= 0.05, = 30)$$

True mean μ	P (Type II error) β	Power 1 – β
25.9	0.8749	0.1251
25.8	0.7794	0.2206
25.7	0.6480	0.3520
25.6	0.5000	0.5000
25.5	0.3520	0.6480
25.4	0.2206	0.7794
25.3	0.1251	0.8749
25.2	0.0618	0.9382
25.1	0.0274	0.9726
25.0	0.0104	0.9896
24.9	0.0036	0.9964
24.8	0.0010	0.9990

Power curves for the gas mileage illustration when = 30 = 100 (= 0.05)and

Copyright © 2012, 2008, 2005 Pearson Education, Inc.

Section 9.8 Which Procedure Should Be Used?

