

Chapter 10

Inferences for Two Population Means

Section 10.1

The Sampling Distribution of the Difference between Two Sample Means for Independent Samples

Process for comparing two population means, using independent samples

Section 10.2 Inferences for Two Population Means, Using Independent Samples: Standard Deviations Assumed Equal

Pooled *t*-Test

Purpose To perform a hypothesis test to compare two population means, μ_1 and μ_2

Assumptions

- **1.** Simple random samples
- **2.** Independent samples
- 3. Normal populations or large samples
- 4. Equal population standard deviations
- **Step 1** The null hypothesis is H_0 : $\mu_1 = \mu_2$, and the alternative hypothesis is

$H_{a}: \mu_{1} \neq \mu_{2}$	or	<i>H</i> _a : $\mu_1 < \mu_2$	or	$H_{\rm a}: \mu_1 > \mu_2$
(Two tailed)	UI	(Left tailed)	UI	(Right tailed)

- **Step 2** Decide on the significance level, α .
- **Step 3** Compute the value of the test statistic

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{(1/n_1) + (1/n_2)}},$$

where

$$s_{\rm p} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Denote the value of the test statistic t_0 .

Copyright © 2012, 2008, 2005 Pearson Education, Inc.

Procedure 10.1 (cont.)

Step 5 If the value of the test statistic falls in the rejection region, reject H_0 ; otherwise, do not reject H_0 .

P-VALUE APPROACH

Step 4 The *t*-statistic has $df = n_1 + n_2 - 2$. Use Table IV to estimate the *P*-value, or obtain it exactly by using technology.

Step 6 Interpret the results of the hypothesis test.

Note: The hypothesis test is exact for normal populations and is approximately correct for large samples from nonnormal populations.

Pooled t-Interval Procedure

Purpose To find a confidence interval for the difference between two population means, μ_1 and μ_2

Assumptions

- **1.** Simple random samples
- 2. Independent samples
- 3. Normal populations or large samples
- 4. Equal population standard deviations

Step 1 For a confidence level of $1 - \alpha$, use Table IV to find $t_{\alpha/2}$ with $df = n_1 + n_2 - 2$.

Step 2 The endpoints of the confidence interval for $\mu_1 - \mu_2$ are

$$(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} \cdot s_p \sqrt{(1/n_1) + (1/n_2)}.$$

Step 3 Interpret the confidence interval.

Note: The confidence interval is exact for normal populations and is approximately correct for large samples from nonnormal populations.

Section 10.3 Inferences for Two Population Means, Using Independent Samples: Standard Deviations Not Assumed Equal

Nonpooled t-Test

Purpose To perform a hypothesis test to compare two population means, μ_1 and μ_2

Assumptions

- 1. Simple random samples
- 2. Independent samples
- 3. Normal populations or large samples

Step 1 The null hypothesis is H_0 : $\mu_1 = \mu_2$, and the alternative hypothesis is

$H_{\rm a}: \mu_1 \neq \mu_2$	07	$H_{\rm a}: \mu_1 < \mu_2$	07	$H_{\rm a}: \mu_1 > \mu_2$
(Two tailed)	OF	(Left tailed)	01°	(Right tailed)

- **Step 2** Decide on the significance level, α .
- **Step 3** Compute the value of the test statistic

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{(s_1^2/n_1) + (s_2^2/n_2)}}$$

Denote the value of the test statistic t_0 .

Slide 10-10

Procedure 10.3 (cont.)

CRITICAL-VALUE APPROACH

Step 4 The critical value(s) are

 $\begin{array}{ccc} \pm t_{\alpha/2} & \text{or} & -t_{\alpha} & \text{or} & t_{\alpha} \\ \text{(Two tailed)} & \text{(Left tailed)} & \text{or} & (\text{Right tailed}) \end{array}$

with $df = \Delta$, where

$$\Delta = \frac{\left[\left(s_1^2/n_1\right) + \left(s_2^2/n_2\right)\right]^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}$$

rounded down to the nearest integer. Use Table IV to find the critical value(s).

Step 5 If the value of the test statistic falls in the rejection region, reject H_0 ; otherwise, do not reject H_0 .

P-VALUE APPROACH

Step 4 The *t*-statistic has $df = \Delta$, where

$$\Delta = \frac{\left[\left(s_1^2/n_1\right) + \left(s_2^2/n_2\right)\right]^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}$$

rounded down to the nearest integer. Use Table IV to estimate the *P*-value, or obtain it exactly by using technology.

Step 5 If $P \leq \alpha$, reject H_0 ; otherwise, do not reject H_0 .

Step 6 Interpret the results of the hypothesis test.

OR

Slide 10-11

Nonpooled t-Interval Procedure

Purpose To find a confidence interval for the difference between two population means, μ_1 and μ_2

Assumptions

- **1.** Simple random samples
- **2.** Independent samples
- 3. Normal populations or large samples

Step 1 For a confidence level of $1 - \alpha$, use Table IV to find $t_{\alpha/2}$ with $df = \Delta$, where

$$\Delta = \frac{\left[\left(s_1^2/n_1\right) + \left(s_2^2/n_2\right)\right]^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}$$

rounded down to the nearest integer.

Step 2 The endpoints of the confidence interval for $\mu_1 - \mu_2$ are $(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} \cdot \sqrt{(s_1^2/n_1) + (s_2^2/n_2)}.$

Step 3 Interpret the confidence interval.

Section 10.4 The Mann-Whitney Test

Appropriate procedure for comparing two population means based on independent simple random samples

(a) Normal populations, same shape. Use pooled *t*-test. (b) Normal populations, different shapes. Use nonpooled *t*-test.

(c) Nonnormal populations, same shape. Use Mann-Whitney test.

 (d) Not both normal populations, different shapes. Use nonpooled *t*-test for large samples; otherwise, consult a statistician.

Table 10.9 & 10.10

Times, in minutes, required to learn how to use the system

Without experience	With experience
139	142
118	109
164	130
151	107
182	155
140	88
134	95
	104

Results of ranking the combined data from Table 10.9

Without experience	Overall rank	With experience	Overall rank
139	9	142	11
118	6	109	5
164	14	130	7
151	12	107	4
182	15	155	13
140	10	88	1
134	8	95	2
		104	3

Mann-Whitney Test

Purpose To perform a hypothesis test to compare two population means, μ_1 and μ_2

Assumptions

- **1.** Simple random samples
- 2. Independent samples
- **3.** Same-shape populations

Step 1 The null hypothesis is H_0 : $\mu_1 = \mu_2$, and the alternative hypothesis is

$$\begin{array}{ll}H_{a}: \mu_{1} \neq \mu_{2} \\ (\text{Two tailed}) \end{array} \text{ or } \begin{array}{ll}H_{a}: \mu_{1} < \mu_{2} \\ (\text{Left tailed}) \end{array} \text{ or } \begin{array}{ll}H_{a}: \mu_{1} > \mu_{2} \\ (\text{Right tailed}) \end{array}$$

Step 2 Decide on the significance level, α .

Step 3 Compute the value of the test statistic

M = sum of the ranks for sample data from Population 1

and denote that value M_0 . To do so, construct a work table of the following form.

Sample from Population 1	Overall rank	Sample from Population 2	Overall rank
			•
			•
•	•		•

Copyright © 2012, 2008, 2005 Pearson Education, Inc.

Procedure 10.5 (cont.)

Step 6 Interpret the results of the hypothesis test.

Slide 10-17

Section 10.5 Inferences for Two Population Means, Using Paired Samples

Table 10.13

Ages, in years, of a random sample of 10 married couples

Couple	Husband	Wife	Difference, d
1	59	53	6
2	21	22	-1
3	33	36	-3
4	78	74	4
5	70	64	6
6	33	35	-2
7	68	67	1
8	32	28	4
9	54	41	13
10	52	44	8
			36

Paired t-Test

Purpose To perform a hypothesis test to compare two population means, μ_1 and μ_2

Assumptions

- 1. Simple random paired sample
- 2. Normal differences or large sample

Step 1 The null hypothesis is H_0 : $\mu_1 = \mu_2$, and the alternative hypothesis is

$H_{\rm a}$: $\mu_1 \neq \mu_2$	or	<i>H</i> _a : $\mu_1 < \mu_2$	01	$H_{\rm a}: \mu_1 > \mu_2$
(Two tailed)	01	(Left tailed)	01	(Right tailed)

- **Step 2** Decide on the significance level, α .
- **Step 3** Compute the value of the test statistic

$$t = \frac{\overline{d}}{s_d / \sqrt{n}}$$

and denote that value t_0 .

Procedure 10.6 (cont.)

Step 6 Interpret the results of the hypothesis test.

Note: The hypothesis test is exact for normal differences and is approximately correct for large samples and nonnormal differences.

Paired t-Interval Procedure

Purpose To find a confidence interval for the difference between two population means, μ_1 and μ_2

Assumptions

- **1.** Simple random paired sample
- 2. Normal differences or large sample

Step 1 For a confidence level of $1 - \alpha$, use Table IV to find $t_{\alpha/2}$ with df = n - 1.

Step 2 The endpoints of the confidence interval for $\mu_1 - \mu_2$ are

$$\overline{d} \pm t_{\alpha/2} \cdot \frac{s_d}{\sqrt{n}}.$$

Step 3 Interpret the confidence interval.

Note: The confidence interval is exact for normal differences and is approximately correct for large samples and nonnormal differences.

Section 10.6 The Paired Wilcoxon Signed-Rank Test

Paired Wilcoxon Signed-Rank Test

Purpose To perform a hypothesis test to compare two population means, μ_1 and μ_2

Assumptions

- 1. Simple random paired sample
- 2. Symmetric differences

Step 1 The null hypothesis is H_0 : $\mu_1 = \mu_2$, and the alternative hypothesis is

$H_{\mathrm{a}}: \mu_1 \neq \mu_2$		<i>H</i> _a : $\mu_1 < \mu_2$		$H_{\rm a}: \mu_1 > \mu_2$
(Two tailed)	or	(Left tailed)	or	(Right tailed)

Step 2 Decide on the significance level, α .

Step 3 Compute the value of the test statistic

W =sum of the positive ranks

and denote that value W_0 . To do so, first calculate the paired differences of the sample pairs, next discard all paired differences that equal 0 and reduce the sample size accordingly, and then construct a work table of the following form.

Paired difference	<i>d</i>	Rank of <i>d</i>	Signed rank R
•	•	•	
•	•	•	

Copyright © 2012, 2008, 2005 Pearson Education, Inc.

Procedure 10.8 (cont.)

Step 5 If the value of the test statistic falls in the rejection region, reject H_0 ; otherwise, do not reject H_0 .

Step 6 Interpret the results of the hypothesis test.

P-VALUE APPROACH

Step 4 Obtain the *P*-value by using technology.

Step 5 If $P \le \alpha$, reject H_0 ; otherwise, do not reject H_0 .

Section 10.7 Which Procedure Should Be Used?

Table 10.15

Summary of hypothesis-testing procedures for comparing two population means. The null hypothesis for all tests is

Туре	Assumptions	Test statistic	Procedure to use			
Pooled t-test	 Simple random samples Independent samples Normal populations or large samples Equal population standard deviations 	$t = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{(1/n_1) + (1/n_2)}}^{\dagger}$ (df = n_1 + n_2 - 2)	10.1 (page 441)			
Nonpooled t-test	 Simple random samples Independent samples Normal populations or large samples 	$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{(s_1^2/n_1) + (s_2^2/n_2)}}^{\ddagger}$	10.3 (page 453)			
Mann-Whitney test	 Simple random samples Independent samples Same-shape populations 	M = sum of the ranks for sample data from Population 1	10.5 (page 468)			
Paired t-test	 Simple random paired sample Normal differences or large sample 	$t = \frac{\overline{d}}{s_d/\sqrt{n}}$ (df = n - 1)	10.6 (page 481)			
Paired W-test	 Simple random paired sample Symmetric differences 	W = sum of positive ranks	10.8 (page 492)			
$ ^{\dagger} s_{p} = \sqrt{\frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}} \qquad ^{\ddagger} df = \frac{[(s_{1}^{2}/n_{1}) + (s_{2}^{2}/n_{2})]^{2}}{\frac{(s_{1}^{2}/n_{1})^{2}}{n_{1} - 1} + \frac{(s_{2}^{2}/n_{2})^{2}}{n_{2} - 1}} $						

Copyright © 2012, 2008, 2005 Pearson Education, Inc.

Flowchart for choosing the correct hypothesis-testing procedure for comparing two population means

Start

Normal probability plots of the sample data for (a) elite runners and (b) others

Boxplots of the sample data for elite runners and others

