Introductory STATISTICS

WEISS

Chapter 12

Inferences for Population Proportions

Section 12.1 Confidence Intervals for One Population Proportion

Definition 12.1

Population Proportion and Sample Proportion

Consider a population in which each member either has or does not have a specified attribute. Then we use the following notation and terminology.

Population proportion, *p*: The proportion (percentage) of the entire population that has the specified attribute.

Sample proportion,: The proportion (percentage) of a sample from the population that has the specified attribute.

Key Fact 12.1

The Sampling Distribution of the Sample Proportion

For samples of size n,

- the mean of \hat{p} equals the population proportion: $\mu_{\hat{p}} = p$ (i.e., the sample proportion is an unbiased estimator of the population proportion);
- the standard deviation of \hat{p} equals the square root of the product of the population proportion and one minus the population proportion divided by the sample size: $\sigma_{\hat{p}} = \sqrt{p(1-p)/n}$; and
- \hat{p} is approximately normally distributed for large n.

One-Proportion z-Interval Procedure

Purpose To find a confidence interval for a population proportion, p

Assumptions

- 1. Simple random sample
- 2. The number of successes, x, and the number of failures, n-x, are both 5 or greater.
- Step 1 For a confidence level of 1α , use Table II to find $z_{\alpha/2}$.
- Step 2 The confidence interval for p is from

$$\hat{p} - z_{\alpha/2} \cdot \sqrt{\hat{p}(1-\hat{p})/n}$$
 to $\hat{p} + z_{\alpha/2} \cdot \sqrt{\hat{p}(1-\hat{p})/n}$,

where $z_{\alpha/2}$ is found in Step 1, n is the sample size, and $\hat{p} = x/n$ is the sample proportion.

Step 3 Interpret the confidence interval.

Section 12.2 Hypothesis Tests for One Population Proportion

One-Proportion z-Test

Purpose To perform a hypothesis test for a population proportion, p

Assumptions

- 1. Simple random sample
- **2.** Both np_0 and $n(1-p_0)$ are 5 or greater

Step 1 The null hypothesis is H_0 : $p = p_0$, and the alternative hypothesis is

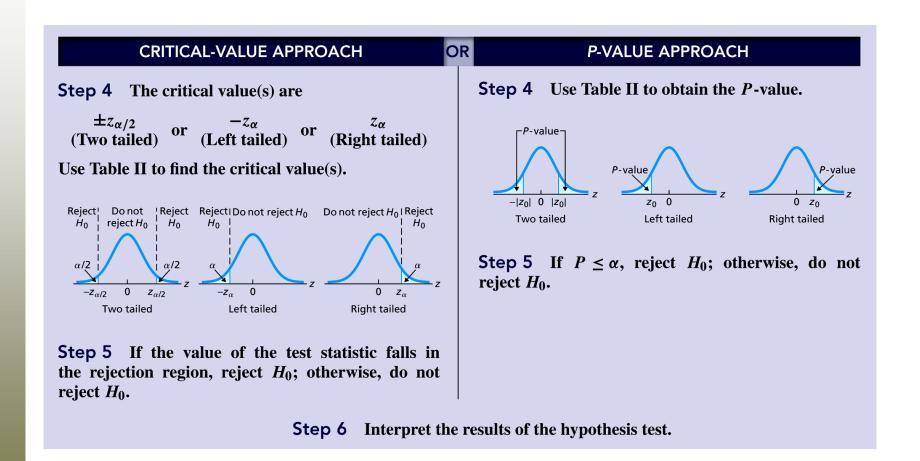
(Two tailed) or
$$H_a$$
: $p < p_0$ or H_a : $p > p_0$ (Right tailed)

- Step 2 Decide on the significance level, α .
- **Step 3** Compute the value of the test statistic

$$z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

and denote that value z_0 .

Procedure 12.2 (cont.)



Section 12.3 Inferences for Two Population Proportions

Key Fact 12.2

The Sampling Distribution of the Difference Between Two Sample Proportions for Independent Samples

For independent samples of sizes n_1 and n_2 from the two populations,

- $\mu_{\hat{p}_1-\hat{p}_2} = p_1 p_2$ (i.e., the difference between sample proportions is an unbiased estimator of the difference between population proportions),
- $\sigma_{\hat{p}_1-\hat{p}_2} = \sqrt{p_1(1-p_1)/n_1 + p_2(1-p_2)/n_2}$, and
- $\hat{p}_1 \hat{p}_2$ is approximately normally distributed for large n_1 and n_2 .

Two-Proportions z-Test

Purpose To perform a hypothesis test to compare two population proportions, p_1 and p_2

Assumptions

- 1. Simple random samples
- 2. Independent samples
- 3. $x_1, n_1 x_1, x_2, \text{ and } n_2 x_2 \text{ are all 5 or greater}$

Step 1 The null hypothesis is H_0 : $p_1 = p_2$, and the alternative hypothesis is

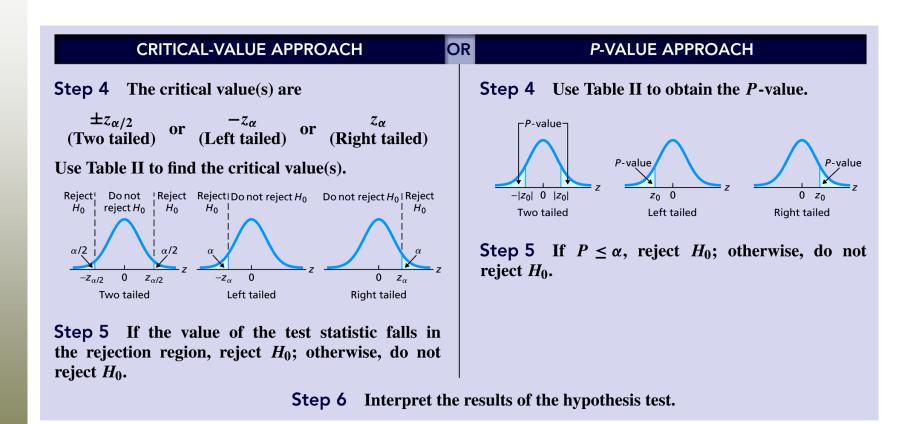
(Two tailed) or
$$H_a$$
: $p_1 < p_2$ or H_a : $p_1 < p_2$ or H_a : $p_1 > p_2$ (Right tailed)

- Step 2 Decide on the significance level, α .
- **Step 3** Compute the value of the test statistic

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_p(1 - \hat{p}_p)}\sqrt{(1/n_1) + (1/n_2)}},$$

where $\hat{p}_p = (x_1 + x_2)/(n_1 + n_2)$. Denote the value of the test statistic z_0 .

Procedure 12.3 (cont.)



Two-Proportions z-Interval Procedure

Purpose To find a confidence interval for the difference between two population proportions, p_1 and p_2

Assumptions

- 1. Simple random samples
- 2. Independent samples
- 3. $x_1, n_1 x_1, x_2, \text{ and } n_2 x_2 \text{ are all 5 or greater}$
- Step 1 For a confidence level of 1α , use Table II to find $z_{\alpha/2}$.
- **Step 2** The endpoints of the confidence interval for $p_1 p_2$ are

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \cdot \sqrt{\hat{p}_1(1-\hat{p}_1)/n_1 + \hat{p}_2(1-\hat{p}_2)/n_2}.$$

Step 3 Interpret the confidence interval.

Formulas 12.3 & 12.4

Margin of Error for the Estimate of $p_1 - p_2$

The margin of error for the estimate of $p_1 - p_2$ is

$$E = z_{\alpha/2} \cdot \sqrt{\hat{p}_1(1-\hat{p}_1)/n_1 + \hat{p}_2(1-\hat{p}_2)/n_2}.$$

Sample Size for Estimating $p_1 - p_2$

A $(1 - \alpha)$ -level confidence interval for the difference between two population proportions that has a margin of error of at most E can be obtained by choosing

$$n_1 = n_2 = 0.5 \left(\frac{z_{\alpha/2}}{E}\right)^2$$

rounded up to the nearest whole number. If you can make educated guesses, \hat{p}_{1g} and \hat{p}_{2g} , for the observed values of \hat{p}_1 and \hat{p}_2 , you should instead choose

$$n_1 = n_2 = (\hat{p}_{1g}(1 - \hat{p}_{1g}) + \hat{p}_{2g}(1 - \hat{p}_{2g}))(\frac{z_{\alpha/2}}{E})^2$$

rounded up to the nearest whole number.