

# Chapter 14

## Descriptive Methods in Regression and Correlation



# Section 14.1 Linear Equations with One Independent Variable



# Definition 14.1

#### y-Intercept and Slope

For a linear equation  $y = b_0 + b_1 x$ , the number  $b_0$  is called the **y-intercept** and the number  $b_1$  is called the **slope**.

# Section 14.2 The Regression Equation



#### Age and price data for a sample of 11 Orions

| Car | Age (yr)<br>x | <b>Price (\$100)</b><br><i>y</i> |
|-----|---------------|----------------------------------|
| 1   | 5             | 85                               |
| 2   | 4             | 103                              |
| 3   | 6             | 70                               |
| 4   | 5             | 82                               |
| 5   | 5             | 89                               |
| 6   | 5             | 98                               |
| 7   | 6             | 66                               |
| 8   | 6             | 95                               |
| 9   | 2             | 169                              |
| 10  | 7             | 70                               |
| 11  | 7             | 48                               |

Scatterplot for the age and price data of Orions from Table 14.2



Slide 14-7

#### Table 14.3 & Figure 14.8

#### Four data points



Scatterplot for the data points in Table 14.3 y 7 6 5 4 3 2 1 х -2 2 3 4 5 1 -1 -2 -3

Two possible lines to fit the data points in Table 14.3

Line A: y = 0.50 + 1.25x

Line *B*: y = -0.25 + 1.50x



Copyright © 2012, 2008, 2005 Pearson Education, Inc.

Determining how well the data points in Table 14.3 are fit by (a) Line A and (b) Line B

Line A: y = 0.50 + 1.25xLine *B*: y = -0.25 + 1.50x $e^2$  $e^2$ ŷ ŷ x y x y e e 1.75 -0.750.5625 1 0.0625 1 1.25 -0.251 1 2 1.75 1 0.25 0.0625 2 1.25 0.75 0.5625 2 2 2 2 3.00 -1.001.0000 2.75 -0.750.5625 4 5.50 4 5.75 0.0625 6 0.50 0.2500 6 0.25 1.8750 1.2500 (a) (b)

#### Key Fact 14.2 & Definition 14.2

#### **Least-Squares Criterion**

The **least-squares criterion** is that the line that best fits a set of data points is the one having the smallest possible sum of squared errors.

#### **Regression Line and Regression Equation**

**Regression line:** The line that best fits a set of data points according to the least-squares criterion.

**Regression equation:** The equation of the regression line.

### Definition 14.3

#### Notation Used in Regression and Correlation

For a set of *n* data points, the defining and computing formulas for  $S_{xx}$ ,  $S_{xy}$ , and  $S_{yy}$  are as follows.

| Quantity                                              | Defining formula                                                                                                                   | Computing formula                                                                                                              |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| S <sub>xx</sub><br>S <sub>xy</sub><br>S <sub>yy</sub> | $ \begin{split} & \Sigma (x_i - \bar{x})^2 \\ & \Sigma (x_i - \bar{x}) (y_i - \bar{y}) \\ & \Sigma (y_i - \bar{y})^2 \end{split} $ | $\Sigma x_i^2 - (\Sigma x_i)^2 / n$<br>$\Sigma x_i y_i - (\Sigma x_i) (\Sigma y_i) / n$<br>$\Sigma y_i^2 - (\Sigma y_i)^2 / n$ |

#### Formula 14.1

#### **Regression Equation**

The regression equation for a set of *n* data points is  $\hat{y} = b_0 + b_1 x$ , where

$$b_1 = \frac{S_{xy}}{S_{xx}}$$
 and  $b_0 = \frac{1}{n}(\Sigma y_i - b_1 \Sigma x_i) = \bar{y} - b_1 \bar{x}.$ 

#### Table for computing the regression equation for the Orion data

| Age (yr) | <b>Price (\$100)</b><br><i>y</i> | xy   | <i>x</i> <sup>2</sup> |
|----------|----------------------------------|------|-----------------------|
| 5        | 85                               | 425  | 25                    |
| 4        | 103                              | 412  | 16                    |
| 6        | 70                               | 420  | 36                    |
| 5        | 82                               | 410  | 25                    |
| 5        | 89                               | 445  | 25                    |
| 5        | 98                               | 490  | 25                    |
| 6        | 66                               | 396  | 36                    |
| 6        | 95                               | 570  | 36                    |
| 2        | 169                              | 338  | 4                     |
| 7        | 70                               | 490  | 49                    |
| 7        | 48                               | 336  | 49                    |
| 58       | 975                              | 4732 | 326                   |

Regression line and data points for Orion data





Extrapolation in the Orion example



Regression lines with and without the influential observation removed



# Section 14.3 The Coefficient of Determination



### Definition 14.5

#### Sums of Squares in Regression

**Total sum of squares, SST:** The total variation in the observed values of the response variable:  $SST = \Sigma (y_i - \bar{y})^2$ .

**Regression sum of squares,** *SSR:* The variation in the observed values of the response variable explained by the regression:  $SSR = \Sigma (\hat{y}_i - \bar{y})^2$ .

**Error sum of squares, SSE:** The variation in the observed values of the response variable not explained by the regression:  $SSE = \Sigma (y_i - \hat{y}_i)^2$ .

#### Table for computing *SST* for the Orion price data

| Age (yr)<br>x | <b>Price (\$100)</b><br><i>y</i> | $y - \overline{y}$ | $(y-\bar{y})^2$ |
|---------------|----------------------------------|--------------------|-----------------|
| 5             | 85                               | -3.64              | 13.2            |
| 4             | 103                              | 14.36              | 206.3           |
| 6             | 70                               | -18.64             | 347.3           |
| 5             | 82                               | -6.64              | 44.0            |
| 5             | 89                               | 0.36               | 0.1             |
| 5             | 98                               | 9.36               | 87.7            |
| 6             | 66                               | -22.64             | 512.4           |
| 6             | 95                               | 6.36               | 40.5            |
| 2             | 169                              | 80.36              | 6458.3          |
| 7             | 70                               | -18.64             | 347.3           |
| 7             | 48                               | -40.64             | 1651.3          |
|               | 975                              |                    | 9708.5          |

Table for computing *SSR* for the Orion price data

| Age (yr) | ) <b>Price (\$100)</b><br><i>y</i> | ŷ      | $\hat{y} - \bar{y}$ | $(\hat{y} - \bar{y})^2$ |
|----------|------------------------------------|--------|---------------------|-------------------------|
| 5        | 85                                 | 94.16  | 5.53                | 30.5                    |
| 4        | 103                                | 114.42 | 25.79               | 665.0                   |
| 6        | 70                                 | 73.90  | -14.74              | 217.1                   |
| 5        | 82                                 | 94.16  | 5.53                | 30.5                    |
| 5        | 89                                 | 94.16  | 5.53                | 30.5                    |
| 5        | 98                                 | 94.16  | 5.53                | 30.5                    |
| 6        | 66                                 | 73.90  | -14.74              | 217.1                   |
| 6        | 95                                 | 73.90  | -14.74              | 217.1                   |
| 2        | 169                                | 154.95 | 66.31               | 4397.0                  |
| 7        | 70                                 | 53.64  | -35.00              | 1224.8                  |
| 7        | 48                                 | 53.64  | -35.00              | 1224.8                  |
|          |                                    |        |                     | 8285.0                  |

#### Table for computing *SSE* for the Orion data

| Age | (yr)<br>x | <b>Price (\$100)</b><br><i>y</i> | ŷ      | $y - \hat{y}$ | $(y - \hat{y})^2$ |
|-----|-----------|----------------------------------|--------|---------------|-------------------|
|     | 5         | 85                               | 94.16  | -9.16         | 83.9              |
| 4   | 4         | 103                              | 114.42 | -11.42        | 130.5             |
| (   | 6         | 70                               | 73.90  | -3.90         | 15.2              |
| :   | 5         | 82                               | 94.16  | -12.16        | 147.9             |
|     | 5         | 89                               | 94.16  | -5.16         | 26.6              |
|     | 5         | 98                               | 94.16  | 3.84          | 14.7              |
| (   | 6         | 66                               | 73.90  | -7.90         | 62.4              |
| (   | 6         | 95                               | 73.90  | 21.10         | 445.2             |
| ,   | 2         | 169                              | 154.95 | 14.05         | 197.5             |
| ,   | 7         | 70                               | 53.64  | 16.36         | 267.7             |
| ,   | 7         | 48                               | 53.64  | -5.64         | 31.8              |
|     |           |                                  |        |               | 1423.5            |

# Section 14.4 Linear Correlation



#### Definition 14.7 & Formula 14.3

#### Linear Correlation Coefficient

For a set of *n* data points, the **linear correlation coefficient**, *r*, is defined by

$$r = \frac{\frac{1}{n-1}\Sigma(x_i - \bar{x})(y_i - \bar{y})}{s_x s_y},$$

where  $s_x$  and  $s_y$  denote the sample standard deviations of the x-values and y-values, respectively.

Using algebra, we can show that the linear correlation coefficient can be expressed as  $r = S_{xy}/\sqrt{S_{xx}S_{yy}}$ , where  $S_{xx}$ ,  $S_{xy}$ , and  $S_{yy}$  are given in Definition 14.3 on page 637. Referring again to that definition, we get Formula 14.3.

#### **Computing Formula for a Linear Correlation Coefficient**

The computing formula for a linear correlation coefficient is

$$r = \frac{\sum x_i y_i - (\sum x_i)(\sum y_i)/n}{\sqrt{\left[\sum x_i^2 - (\sum x_i)^2/n\right]\left[\sum y_i^2 - (\sum y_i)^2/n\right]}}.$$



Copyright © 2012, 2008, 2005 Pearson Education, Inc.